首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
航空   12篇
航天技术   8篇
航天   23篇
  2019年   1篇
  2018年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1992年   1篇
  1987年   2篇
  1977年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
Current and planned developments in the field of civilian and commercial satellite imagery promise a major expansion in international accessibility to remote sensing data and technologies. This paper addresses the implications of the expanding global access to land remote sensing data and their derived products. While atmospheric, meteorological, and oceanographic data is also widely available at cost or free of charge, it is land remote sensing - specifically the unique systems with high-resolution and frequent revisit times - that are of primary concern for international and regional security issues. Military and intelligence satellites are not addressed in this discussion of expansion due to their inherently controlled access, unless such systems also provide commercially available imagery or products (as is the case with some Russian systems).  相似文献   
12.
A procedure is outlined for estimating the damping in a multi-element space structure by incorporating distributed material damping and discrete nonlinear joint properties into a linear analysis. Tests have been conducted in which the transient response of a truss member is measured in free fall in a vacuum in order to obtain precise material damping characteristics. The force-state mapping technique is then used to identify the localized nonlinearities in joints by mapping the force transmitted through the joint as a function of the full mechanical state of the joint. The identified nonlinear joint parameters are then linearized using an equivalent energy approach which finds the equivalent linear stiffness and linear viscous damping by equating the integrated work done and energy dissipated by the nonlinearity to those of a spring and damper undergoing sinusoidal motion. The distributed material damping and localized nonlinear effects are then incorporated to form a linearized damped finite element model. Finally, an eigenvalue perturbation analysis is developed to explore the effect of introducing damping at the joints on the overall dynamics of the truss, and to obtain design guidance on where supplemental joint damping might optimally be added.  相似文献   
13.
We review the notion that some extragalactic giant magnetar flares could be mistaken for short cosmic gamma-ray bursts. There are at least two general ways to approach this problem. One is statistical, while the other considers individual bursts. Both methods appear to agree that extragalactic flares can be, and indeed are, present in the short burst population, although the rate of such events remains uncertain. The statistical studies all suggest a rate of ∼1–15% in the short GRB sample.  相似文献   
14.
The observational properties of the soft gamma repeaters are reviewed briefly, starting with the time histories and energy spectra of their bursts. The short bursts and giant flares are compared. Their quiescent emission is presented, and the context of the magnetar model is discussed.  相似文献   
15.
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6.  相似文献   
16.
We propose a terahertz (far-infrared) circular dichroism-based life-detection technology that may provide a universal and unequivocal spectroscopic signature of living systems regardless of their genesis. We argue that, irrespective of the specifics of their chemistry, all life forms will employ well-structured, chiral, stereochemically pure macromolecules (>500 atoms) as the catalysts with which they perform their metabolic and replicative functions. We also argue that nearly all such macromolecules will absorb strongly at terahertz frequencies and exhibit significant circular dichroism, and that this circular dichroism unambiguously distinguishes biological from abiological materials. Lastly, we describe several approaches to the fabrication of a terahertz circular dichroism spectrometer and provide preliminary experimental indications of their feasibility. Because terahertz circular dichroism signals arise from the molecular machinery necessary to carry out life's metabolic and genetic processes, this life-detection method differs fundamentally from more well-established approaches based on the detection of isotopic fractionation, "signature" carbon compounds, disequilibria, or other by-products of metabolism. Moreover, terahertz circular dichroism spectroscopy detects this machinery in a manner that makes few, if any, assumptions as to its chemical nature or the processes that it performs.  相似文献   
17.
Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.  相似文献   
18.
For decades, wind tunnel testing has been conducted in test section environments that have not been adequately or consistently documented. Since wind tunnel flow quality can adversely affect test results, accurate and consistent flow quality measurements are required, along with an understanding of the sources, characteristics, and management of flow turbulence. This paper will review turbulence measurement techniques and data obtained in subsonic, transonic, and supersonic test facilities as they relate to the determination and assessment of wind tunnel flow quality. The principles and practical application of instrumentation used in the measurement and characterization of wind tunnel turbulence will be described. Techniques used for the identification of the sources of wind tunnel disturbances, and the performance of turbulence suppression devices will be outlined. These test techniques will be illustrated with extensive measurements obtained in a number of test facilities. The measurements will provide comprehensive turbulence data that are vital to the assessment and management of flow quality. Procedures designed to assess the potential influence of adverse flow quality on wind tunnel model test performance will also be discussed.  相似文献   
19.
A comprehensive goal of the Canadian Space Agency studies (CCISS, Vascular and BP Reg) has been to investigate the efficacy of current exercise countermeasures to maintain cardiovascular and cerebrovascular health on return to Earth after up to 6-months in space. Results from the CCISS experiments revealed no significant change of in-flight heart rate during daily activities or sleep, and small, but variable between astronauts, post-flight elevation. The between astronaut differences were exaggerated during measurement of spontaneous baroreflex slope, which was reduced post-flight (P<0.05) during paced breathing with 3 astronauts having significant correlations between reduced baroreflex and reduced RR-interval (consistent with reduced fitness). Cerebrovascular autoregulation and CO2 response were mildly impaired after flight. Some loss of in-flight fitness of astronauts in Vascular was reflected by the increase in HR at a work rate of 161±46 W of 12.3±10.5 bpm, 10.4±5.9 bpm and 13.4±5.7 bpm for early-flight, late-flight and R+1, respectively. On return to gravity, changes in resting heart rate for supine (5.9±3.5 bpm), sit (8.1±3.3 bpm) and stand (10.3±10.0 bpm) were small but variable between individuals (from −5 bpm to +20 bpm in post-flight standing) and not related to the change in exercise heart rate. In Vascular astronauts, pulse wave transit time measured to the finger tended to be reduced post-flight and carotid artery distensibility was significantly reduced (P=0.03, and n=6). The heart rate and baroreflex data suggest that some astronauts return with cardiovascular deconditioning in spite of the exercise regimes. However, greater arterial stiffness is common among all astronauts studied to date. The new CSA project, BP Reg, will monitor inflight blood pressure in an attempt to identify astronauts in greater need for countermeasures. Future research should focus on whether Vascular changes in astronauts might make them an appropriate model to study the mechanisms of arterial aging on Earth.  相似文献   
20.
Within the last year three major re-entries occurred. The satellites UARS, ROSAT and Phobos-Grunt entered Earth’s atmosphere with fragments reaching the surface. Due to a number of uncertainties in propagating an object’s trajectory the exact place and time of a satellite’s re-entry is hard to determine. Major influences when predicting the re-entry time are the changing precision of the available orbital data, the satellite’s ballistic coefficient, the activity of the sun which influences the Earth’s atmosphere and the underlying quality of the atmospheric model. In this paper a method is presented which can reduce the variability in short-term orbital lifetime prediction induced by fluctuating orbital data accuracies. A re-entry campaign is used as a reference for this purpose. For a window of a few weeks before the re-entry the position data of a synthetic object is disturbed considering different degrees of orbital data errors. As a result different predictions will exist for the generated position data of a given day. Using a regression algorithm on the available data an average position is obtained, which is then used for the orbital lifetime prediction. The effect of this measure is a more consistent prediction of the orbital lifetime. The paper concludes with the comparison of the generated re-entry windows in various test cases for the original and the averaged data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号